
A Carbonyl-bridged, Phosphite-substituted Cobalt Carbonyl Derivative

By B. L. BOOTH, M. GARDNER, and R. N. HASZELDINE*

(Department of Chemistry, University of Manchester Institute of Science and Technology, Manchester M60 1QD)

Summary The carbonyl-bridged isomer of the compound $\{Co(CO)_2[P(OCH_2)_3CEt]_2\}_2$ has been isolated from the reaction between $HCo(CO)_2[P(OCH_2)_3CEt]_2$ and butadiene.

OCTACARBONYLDICOBALT¹ and its mono- and di-substituted derivatives^{2,3} have been shown by i.r. spectroscopy to exist

as equilibrium mixtures of bridged and non-bridged forms in solution. Carbonyl-bridged isomers of the compounds $\operatorname{Co}_2(\operatorname{CO})_5(\operatorname{PMe}_3)_3$ and $\operatorname{Co}_2(\operatorname{CO})_4(\operatorname{PMe}_3)_4$ have recently been briefly reported,⁴ and a novel route to related bridged isomers of cobalt carbonyl is now described.

When $HCo(CO)_2[P(OCH_2)_3CEt]_2$,⁵ prepared (81%) from the reaction between $HCo(CO)_4$ and $P(OCH_2)_3CEt$ at 0° in diethyl ether,⁶ reacts with an excess of butadiene at room temp. for 7 days, the major product, isolated (60%) after chromatography, was a yellow-brown solid of molecular formula $\{Co(CO)_2[P(OCH_2)_3CEt]_2\}_2$. Its i.r. spectrum, which showed two strong bands in both the terminal and bridging metal carbonyl regions, was similar to the spectra reported for the compounds $(Ph_3P)_2(CO)Rh(CO)_2Rh(CO)-(PPh_3)_2$,⁷ and $(Me_3P)_2(CO)Co(CO)_2Co(CO)(PMe_3)_2$,⁴ and is thus assigned the bridged structure $[EtC(CH_2O)_3P]_2(CO) Co(CO)_2Co(CO)[P(OCH_2)_3CEt]_2$ [I].

Other minor products isolated from the reaction with butadiene included another carbonyl-bridged complex [EtC(CH₂O)₃P]₂(CO)Co(CO)₂Co(CO)₂[P(OCH₂)₃CEt] (II; 6%); the π -allyl complex, (π -C₄H₇)Co(CO)[P(OCH₂)₃CEt]₂ [(III); 3%]; the hydride HCo(CO)[P(OCH₂)₃CEt]₃ [(IV); 4%], which has also been prepared (70%) by heating HCo(CO)₂[P(OCH₂)₃CEt]₂ with an excess of the phosphite ligand at 80° for 1 hr. in the solid state;⁶ and an ionic complex {Co(CO)₂[P(OCH₂)₃CEt]₃]+ [Co(CO)₄]⁻ [(V); 9%]. This last compound had good conductivity in nitromethane solution, and showed a strong band in its i.r. spectrum at 1896 cm.⁻¹ for the [Co(CO)₄]⁻ group;⁸ this band was absent from the spectrum fo its tetraphenylborate derivative {Co(CO)₂[P(OCH₂)₃CEt]₃} + BPh₄⁻ (VI).

Compound (I) does not rearrange to the corresponding

non-bridged isomer after several hours in solution under a nitrogen atmosphere. On heating at 80° for 2 days in solution compound (I) decomposes to give an unidentified ionic cobalt-carbonyl complex.

Attempts to obtain (I) or its non-bridged isomer from

TABLE			
Compound	Colour	M.p. (°)	v_{CO} bands (cm. ⁻¹) ^a
(I) (II) (III)	Yellow-brown Dark-brown Yellow	100 (decomp.) 95 (decomp.)	2001s, 1979s, 1798s, 1777s 2038m, 2000s, 1980s, 1812s, 1795s 1955m—s
(III) (IV) (V)	White Pale yellow	155 (decomp.) 180 (decomp.) 135 (decomp.)	1955п—-s 2000s [v _{Co} -н 1972m] 2079m, 2028s, 1896vs
(VI) (VII)	Pale yellow Pale yellow	160 (decomp.) 200 (decomp.)	2079, 2028s 2057m, 2024s, 1897vs (2000s, 1890vs) ^b
(VIII)	Pale yellow	200 (decomp.)	2057m, 2024s (2000s) b
(IX) (X)	Yellow-brown Orange	87—88	ca. 2000br.s, ca. 1780br.s 1969m—s

^a Unless stated spectra recorded on solutions in CH₂Cl₂; ^b spectrum recorded as a mull in Nujol.

octacarbonyldicobalt by heating it with an excess of P(OCH₂)₂CEt at 65-70° for 30 hr. in the absence of solvent were unsuccessful. The major product from this reaction was the ionic complex $\{Co(CO)[P(OCH_2)_3CEt]_4\}^+$ $[Co(CO)_4]^-$ [(VII); 93%], identified by preparation of its tetraphenylborate derivative (VIII), and by synthesis (80%) from compound (V) by heating with an excess of phosphite ligand in the solid state for 50 hr. at 65-70°. A comparison of the i.r. spectra of (VII) or (VIII) taken on a mull in Nujol and on a solution in CH₂Cl₂ (Table) indicates that in solution these compounds exist as a mixture of the two possible isomers (VIIa or VIIIa) and (VIIb or VIIIb).

band in both the terminal and bridging metal carbonyl regions of its i.r. spectrum suggesting a structure [(PhO)₃P]₂-(CO)Co(CO₂)Co(CO)[P(OPh)₃]₂ (IX). Other products isolated from this reaction were the π -allyl complex $(\pi$ -C₄H₇)Co(CO)[P(OPh)₃]₂ [(X); 19%], and the previously reported¹⁰ compound $[Co(CO)_3P(OPh)_3]_2$ (16%).

Satisfactory elemental analyses have been obtained for all the compounds mentioned.

M.G. thanks the S.R.C. for a studentship grant.

(Received, September 5th, 1969; Com. 1347.)

- ¹G. Bor, Spectrochim. Acta, 1963, 19, 2065; K. Noack, ibid., 1963, 19, 1925; K. Noack, Helv. Chim. Acta, 1964, 47, 1555.
- ² G. Capron-Cotigny and R. Poilblanc, Bull. Soc. chim. France, 1967, 1440.
- ³ A. R. Manning, J. Chem. Soc. (A), 1968, 1135; 1665.
 ⁴ C. Pegot and M. Poilblanc, Compt. rend., 1969, 268, C, 955.
- ⁶ R. F. Heck, J. Amer. Chem. Soc., 1963, **265**, 200, 300.
 ⁶ R. F. Heck, J. Amer. Chem. Soc., 1963, **85**, 1220; 1965, **87**, 2572.
 ⁶ B. L. Booth, R. N. Haszeldine, and M. B. P. McLeod, unpublished results from this Department.
 ⁷ D. Evans, G. Yagupsky, and G. Wilkinson, J. Chem. Soc. (A), 1968, 2660.
 ⁸ S. Attali and R. Poilblanc, Compt. rend., 1968, **267**, C, 718.
 ⁹ W. Hisbar and H. Duchatsch. Chem. Rev. 1965, **98**, 2933.

⁹ W. Hieber and H. Duchatsch, *Chem. Ber.*, 1965, 98, 2933. ¹⁰ A. Sacco and M. Freni, *Ann. Chim. (Italy)*, 1958, 48, 218; W. Hieber and W. Freyer, *Chem. Ber.*, 1958, 91, 1230; 1960, 93, 462.